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Abstract. This paper is a theoretical study of notions in combina-
torics of words motivated by information being encoded as DNA strands
in DNA computing. We generalize the classical notions of conjugacy
and commutativity of words to incorporate the notion of an involution
function, a formalization of the Watson-Crick complementarity of DNA
single-strands. We define and study properties of Watson-Crick conju-
gate and commutative words, as well as Watson-Crick palindromes. We
obtain, for example, a complete characterization of the set of all words
that are not Watson-Crick palindromes. Our results hold for more general
functions, such as arbitrary morphic and antimorphic involutions. They
generalize classical results in combinatorics of words, while formalizing
concepts meaningful for DNA computing experiments.

1 Introduction

Theoretical DNA Computing is an area of biomolecular computing that has seen
a surge of activity in recent years. It loosely encompasses contributions to fun-
damental research in computer science originated in or motivated by research in
DNA computing. Examples are numerous and they include theoretical aspects of
self-assembly [1], [20], DNA sequence design [11], [17], and mathematical prop-
erties of DNA-encoded information [10], [8].

This paper constitutes a contribution to the field of theoretical DNA com-
puting by investigating a generalization of the classical notions of conjugacy and
commutativity of words motivated by DNA-encoded information. The main idea
is that information-encoding strings that are used in DNA computing experi-
ments have an important property that differentiates them from their electronic
computing counterparts. This property is the Watson-Crick complementarity
between DNA single-strands that allows information-encoding strands to po-
tentially interact. Mathematically, this translates into generalizing the identity
function, which is the only one operating in the electronic realm, to an arbitrary
involution function. An involution is a function θ such that θ2 equals the iden-
tity. Given an alphabet Σ, an antimorphic involution, i.e., an involution θ with
the additional property that θ(uv) = θ(v)θ(u) for all strings u, v ∈ Σ∗, is the
mathematical notion that formalizes the Watson-Crick complementarity. Indeed,
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an antimorphic involution captures the two main properties of the Watson-Crick
complement of a DNA strand, namely its being the reverse (antimorphic prop-
erty) complement (involution property) of the original strand. Replacing identity
with involutions paves thus the way to concepts that are both meaningful formal-
izations of information-encoding DNA strands, and mathematically interesting
generalizations of classical concepts in formal language theory, coding theory
and combinatorics of words.

For example, using the concept of involutions one obtains generalizations of
the classical notions of prefix codes, suffix codes and comma-free codes [12], [13].
In addition to being of theoretical interest, these notions prove to be meaningful
in the context of DNA computing experiments. Indeed, if θ is the Watson-Crick
involution, then a θ-sticky-free, or θ-overhang-free code is a set of words where no
unwanted hybridizations of a certain type occur between DNA codewords. More
recently, in [14] we extended the concept of bordered and unbordered words to
involution-bordered and involution-unbordered words.

In this paper we extend the notions of conjugate and commutative words to
Watson-Crick conjugate and Watson-Crick commutative words. Our results hold
in a more general context where the function θ involved is an arbitrary morphic
or antimorphic involution. To put these results in context, they augment stud-
ies of combinatorial properties of words which have meaningful applications in
numerous other fields. For example, word properties such as periodicity and bor-
deredness play a role in many areas including string searching algorithms [4,5,6],
data compression [7,21] and in the study of coding properties of sets of words
[2,19] as well as sequence assembly in computational biology [18]. Relevant to
this paper, there are several classical results about conjugacy of words and words
that commute [19]. In addition, in [3] the authors extend certain combinatorial
properties of conjugacy of words to partial words with an arbitrary number of
holes. An authoritative text on the study of combinatorial properties of strings
would be [16].

Thepaper is organizedas follows.Webeginby reviewingbasic concepts of combi-
natorics ofwords and thedefinitionofθ-borderedand θ-unborderedwords for anar-
bitrarymorphic or antimorphic involutionθ. InSection2,wealso define the concept
of θ-conjugacy on words. If θ is the antimorphicWatson-Crick involution, this gives
rise to the notion ofWatson-Crick conjugatewords. Figure 1 illustrates the interac-
tion between two DNA strands u and v over the DNA alphabet Δ = {A, C, G, T }
that are Watson-Crick conjugates to each other. We show that for a morphic invo-
lution θ, the θ-conjugacy on words is reflexive, symmetric and transitive. We also
obtain several properties of θ-conjugate words including a general characterization
of the words that are θ-conjugate in Proposition 1. These results generalize well-
known properties of conjugate words [19].

In Section 3, we introduce the concept of θ-commutativity on words for
an arbitrary morphic or antimorphic involution θ, and its particular case of
Watson-Crick commutativity. Figure 3 illustrates the interaction between two
DNA strands u and v that Watson-Crick commute. We obtain several prop-
erties of words that θ-commute, including their characterization (Proposition
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3), and properties of the set Cθ(1) of words that cannot be written as a con-
catenation of two non-empty words x, y such that x θ-commutes with y. These
properties generalize classical properties of words that commute, [19]. We define
the notion of θ-palindrome that was obtained independently in [9]. Note that if
θ is the Watson-Crick involution, then the notion of Watson-Crick palindromes
coincides with the term “palindrome” as used by molecular biologists. We define
a relation on words using the θ-commutativity and show that, for an antimor-
phic involution θ, the set of all θ-palindromes can be characterized using this
relation.

2 Watson-Crick Conjugate Words

Before introducing the notion of Watson-Crick conjugate words, we review some
basic concepts of combinatorics of words. An alphabet Σ is a finite non-empty set
of symbols. A word u over Σ is a finite sequence of symbols in Σ. We denote by
Σ∗ the set of all words over Σ, including the empty word λ and, by Σ+, the set
of all non-empty words over Σ. We note that with the concatenation operation
on words, Σ∗ is the free monoid and Σ+ is the free semigroup generated by
Σ. For a word w ∈ Σ∗, the length of w is the number of symbols in w and
is denoted by |w|. For a word w, the set of its prefixes/ suffixes are defined as
follows: Pref(w) = {u ∈ Σ+|∃v ∈ Σ∗, w = uv} and Suff(w) = {u ∈ Σ+|∃v ∈
Σ∗, w = vu}.

Bordered words were initially called “overlapping words” and unbordered
words were called “non-overlapping words”. For properties of bordered and un-
bordered words we refer the reader to [19,22]. In [14], we extended the concept
of bordered words to involution bordered words. We now recall some notions
defined and used in [22] and [14].

Definition 1. Let θ be either a morphic or an antimorphic involution on Σ∗.

1. For v, w ∈ Σ∗, w ≤p v iff v ∈ wΣ∗.
2. For v, w ∈ Σ∗, w ≤θ

s v iff v ∈ Σ∗θ(w).
3. ≤θ

d =≤p ∩ ≤θ
s.

4. For u ∈ Σ∗, v ∈ Σ∗ is said to be a θ-border of u if v ≤θ
d u, i.e., u = vx =

yθ(v).
5. For w, v ∈ Σ∗, w <p v iff v ∈ wΣ+.
6. For w, v ∈ Σ∗, w <θ

s v iff v ∈ Σ+θ(w).
7. <θ

d =<p ∩ <θ
s.

8. For u ∈ Σ∗, v ∈ Σ∗ is said to be a proper θ-border of u if v <θ
d u.

9. For u ∈ Σ+, define Lθ
d(u) = {v|v ∈ Σ∗, v <θ

d u}.
10. νθ(u) = |Lθ

d(u)|.
11. Dθ(i) = {u|u ∈ Σ+, νθ(u) = i}.
12. A word u ∈ Σ+ is said to be θ-bordered if there exists v ∈ Σ+ such that

v <θ
d u, i.e., u = vx = yθ(v) for some x, y ∈ Σ+.

13. A non-empty word which is not θ-bordered is called θ-unbordered.
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A word u in Σ∗ is a conjugate of w in Σ∗ if there exists v ∈ Σ∗ such that
uv = vw. Note that conjugacy on words is an equivalence relation. In [3], the
authors showed that conjugacy on partial words is reflexive and symmetric but
not transitive. In this section we extend the concept of conjugacy of words to
incorporate the notion of an involution function and show that θ-conjugacy on
words is reflexive. We also show that θ-conjugacy on words is symmetric and
transitive when θ is a morphic involution.

Definition 2. Let θ be either a morphic or an antimorphic involution. A word
u is a θ-conjugate of another word w if uv = θ(v)w for some v ∈ Σ∗.

Example 1. Let Σ = {a, b} and θ be an antimorphic involution which maps a to
b and vice versa. Let u = aba and w = bab. Then u is a θ-conjugate of w since
aba · b = θ(b) · bab.

u

w

u

w

(a) (b)

Fig. 1. If u is Watson-Crick conjugate of w, then u and the Watson-Crick complement
of w overlap, resulting thus in one of the two intermolecular hybridizations shown above

For any DNA string u over the DNA alphabet Δ = {A, G, C, T }, the Watson-
Crick conjugates of u are defined as the DNA strings w such that uv = θ(v)w for
some v ∈ Δ∗. In this case, θ is the Watson-Crick involution which maps A �→ T ,
C �→ G and viceversa such that θ is an antimorphic involution. In the following
example we find all the Watson-Crick conjugates of a given DNA string.

Example 2. Let Δ = {A, G, C, T } be the DNA alphabet and let u = ATAG.
Then the Watson-Crick Conjugates of u are given by Conjθ(u) = {ATAG,
TAGT, AGAT, GTAT, CTAT }. For all w ∈ Conjθ(u), there exists a v ∈ Σ∗

such that uv = θ(v)w. These words v respectively are T , AT , TAT , CTAT .

The characterization of θ-conjugate words in Proposition 2 will show that if u
and w are Watson-Crick conjugates, then u and the Watson-Crick complement
of w overlap, hence forming the hybridization in Fig 1.

Note that for all u ∈ Σ∗, u is a θ-conjugate of u since uλ = θ(λ)u. Also u is a
θ-conjugate of θ(u) since uθ(u) = θ(θ(u))θ(u) and hence for all u, v ∈ Σ∗, uv is a
θ-conjugate to vθ(u) since uvθ(u) = θ(θ(u))vθ(u). Even though we concentrate
on Watson-Crick conjugates, we provide results that hold for any general morphic
or an antimorphic involution. In the next lemma we show that the θ-conjugacy
of words is transitive when θ is a morphic involution.
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Lemma 1. Let u, v, w ∈ Σ+ such that u is a θ-conjugate of w and w is a
θ-conjugate of v.

1. If θ is a morphic involution then u is a θ-conjugate of v.
2. If θ is an antimorphic involution then u is not necessarily a θ-conjugate of

v.

Proof. 1. Let θ be a morphic involution. Since u is a θ-conjugate of w and w
is a θ-conjugate of v then there exists r, s ∈ Σ∗ such that ur = θ(r)w and
ws = θ(s)v which implies that urs = θ(r)θ(s)v. Hence urs = θ(rs)v and u
is a θ-conjugate of v.

2. Let θ be an antimorphic involution. Then u is not necessarily a θ-conjugate
of v. For example let Σ = {a, b} and θ(a) = b and let u = aba, w = bab and
v = bba. Note that aba is a θ-conjugate of bab since aba · b = θ(b) · bab. Also
bab is a θ-conjugate of bba since bab · ba = θ(ba) · bba. Suppose there exist
a y ∈ Σ∗ such that aba · y = θ(y) · bba then θ(y) = ax for some x ∈ Σ∗

which implies that y = θ(x)b which is not possible since y has to be of the
form za. Hence the θ-conjugacy relation is not transitive for an antimorphic
involution θ.

�	

Lemma 2. Let x, y ∈ Σ∗ such that x is a θ-conjugate of y.

1. If θ is an antimorphic involution then for all u ∈ Σ∗ ux is a θ-conjugate of
yθ(u).

2. If θ is a morphic involution then there exists a u ∈ Σ∗ such that ux is not a
θ-conjugate of yθ(u).

Proof. 1. Let θ be an antimorphic involution. Since x is a θ-conjugate of y there
exists v ∈ Σ∗ such that xv = θ(v)y and hence uxvθ(u) = uθ(v)yθ(u). Take
r = vθ(u), then θ(r) = θ(vθ(u)) = uθ(v) which implies that uxr = θ(r)yθ(u)
hence ux is a θ-conjugate of yθ(u).

2. Let θ be a morphic involution and let Σ = {a, b} such that θ(a) = b. Note
that for x = abb and y = bbb, x is a θ-conjugate of y since x · b = θ(b) · bbb.
But for u = ab ux is not a θ-conjugate of yθ(u). Also for w = ux = ababb,
the set of all θ-conjugates is C = {babaa, bbaba, bbbab, abbba, babbb, ababb}
and clearly yθ(u) = bbbba /∈ C.

�	

Proposition 1. Let u be a θ-conjugate of w such that uv = θ(v)w for some
v ∈ Σ∗. Then for a morphic involution θ there exists x, y ∈ Σ∗ such that u = xy
and one of the following hold:

1. w = yθ(x) and v = (θ(x)θ(y)xy)iθ(x) for some i ≥ 0.
2. w = θ(y)x and v = (θ(x)θ(y)xy)iθ(x)θ(y)x for some i ≥ 0.

Proof. Let θ be a morphic involution. Given uv = θ(v)w for some v ∈ Σ∗. Then
we either have |u| < |v| or |v| ≤ |u|. Suppose |u| ≥ |v| then u = θ(v)α and w = αv
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for some α ∈ Σ∗. Hence for v = θ(x), u = xy and w = yθ(x). Assume that
|u| < |v|. Then there exits p1 ∈ Σ+ such that θ(v) = up1 and v = p1w. Hence
v = p1w = θ(u)θ(p1). Suppose |u| < |p1| then there exists p2 ∈ Σ+ such that
p1 = θ(u)p2 and θ(p1) = p2w and hence uθ(p2) = p2w and v = θ(p2)θ(w)w =
θ(u)uθ(p2). Continuing this way we can find a pn ∈ Σ+ such that |u| > |pk| and
v = an

j θ(xn) for aj = θ(u) when j is odd and aj = u when j is even. When n

is even, we have n = 2k and v = (θ(u)u)kθ(x2k) with uθ(x2k) = x2kw which
implies u = x2kr = xy and w = rθ(x2k) = yθ(x) and v = (θ(x)θ(y)xy)kθ(x).
When n is odd n = 2k + 1 for some k and v = (θ(u)u)2k−1θ(u)θ(x2k+1) with
θ(u)θ(x2k+1) = x2k+1w. Then we have θ(u) = x2k+1r = θ(x)θ(y) and w =
rθ(x2k+1) = θ(y)x and v = (θ(x)θ(y)xy)2k−1θ(x)θ(y)x. �	

Corollary 1. For a morphic involution θ on Σ∗, θ-conjugacy on words is a
symmetric relation.

Example 3. Let Σ = {a, b} and let θ be a morphic involution which maps a to b
and viceversa. From Proposition 1 for w = ux = ababb, the set of all θ-conjugates
are C = {babaa, bbaba, bbbab, abbba, babbb, ababb}.

Proposition 2. Let u be a θ-conjugate of w. Then for an antimorphic involu-
tion θ, there exists x, y ∈ Σ∗ such that either u = xy and w = yθ(x) (Figure 1,
(a)) or w = θ(u) (Figure 1, (b)).

Corollary 2. Let θ be either a morphic or an antimorphic involution and let u
be a θ-conjugate of w for u, w ∈ Σ+. Then either uw or wu is θ-bordered.

Let u be a θ-conjugate of w. Then for an antimorphic involution θ, either uw
or wu precisely form a hairpin-like structure. For example, choose a DNA string
u = ATAGCT and one of its Watson-Crick conjugates w = GCTTAT . Then
uw = ATAGCTGCTTAT = (ATA)GCTGCTθ(ATA), as illustrated in Fig. 2.

Fig. 2. The DNA string GCTTAT is a Watson-Crick conjugate of ATAGCT , and
their catenation ATAGCTGCTTAT forms a hairpin

3 Watson-Crick Commutative Words

Two words x and y are said to commute when xy = yx, [19]. In this section we
define the concept of θ-commutative words and show that commutative words
are a special case of θ-commutative words when θ is identity. We also introduce
the θ-commutativity order and characterize the set of all θ-palindromes for an
antimorphic involution θ.
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Definition 3. Let θ be either a morphic or an antimorphic involution.

1. For x, y ∈ Σ∗, x is said to θ-commute with y if xy = θ(y)x.
2. We define the θ-commutativity order as v ≤θ

c u iff u = vx = θ(x)v for some
x ∈ Σ∗.

3. Lθ
c(u) = {v|v ∈ Σ∗, v ≤θ

c u}.
4. νθ

c (u) = |Lθ
c(u)|.

5. For i ≥ 1, define Cθ(i) = {u|u ∈ Σ+, νθ
c (u) = i}.

6. A word x ∈ Σ∗ is called a θ-palindrome if x = θ(x).

Suppose uv = θ(v)u holds. Then, if v = λ, then u is a θ-conjugate of u. (This also
implies that u θ-commutes with λ.) Otherwise, it means that u θ-commutes with v.
For any non-empty DNA strings u and v over the DNA alphabet Δ = {A, G, C, T },
we say that u Watson-Crick commutes with v if uv = θ(v)u where θ is the Watson-
Crick involution. The word u ∈ Δ∗ is called a Watson-Crick palindrome if u =
θ(u) where θ is the Watson-Crick involution. In what follows, we will show that for
the Watson-Crick involution θ if u θ-commutes with v , then u is a Watson-Crick
palindrome and either u is a prefix of θ(v) or θ(v) is a prefix of u.

Example 4. Consider a string u = AGCT over the DNA alphabet Δ. Let θ be
the Watson-Crick involution and v = CTAGAGCT . Then u θ-commutes with
v since uv = AGCT · CTAGAGCT = θ(CTAGAGCT ) · AGCT = θ(v)u.

u

v

u

v
u

u

Fig. 3. If theDNAstringuWatson-Crick commuteswith v, thenoneof the intermolecular
hybridizations (a) or (b) occurs and, in addition, u is a Watson-Crick palindrome (c).

If the word u Watson-Crick commutes with the word v, the characterization
in Proposition 3 will show that u and v will form one of the hybridizations in
Figure 3.

Observation 1 Let θ be either a morphic or an antimorphic involution on Σ∗.

1. For all u ∈ Σ+, u ∈ Lθ
c(u), i.e., u ≤θ

c u.
2. Cθ(1) = {u ∈ Σ+|v ≤θ

c u ⇔ v = u}.
3. For all u ∈ Σ+ such that u is a θ-palindrome we have λ ∈ Lθ

c(u).
4. For all a ∈ Σ such that a �= θ(a), a+ ⊆ Cθ(1).
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Note that Cθ(1) is the set of all words that cannot be written as a catenation of
two non-empty words x and y such that x θ-commutes with y. Cθ(1) is the set of
all words u that have only one element in the set Lθ

c(u) namely u. In particular, θ-
palindromes are not in Cθ(1). In the next lemma we show that for an antimorphic
involution θ, the set Lθ

c(u) is a totally ordered set with respect to ≤θ
c .

Lemma 3. For an antimorphic involution θ and u ∈ Σ+, Lθ
c(u) is a totally

ordered set with ≤θ
c.

The proof technique of the following proposition is similar to that of Proposition
1 and hence we omit the proof.

Proposition 3. Let u, v ∈ Σ+ such that u θ-commutes with v, i.e., uv = θ(v)u.

1. If θ is an antimorphic involution then u = x(yx)i, v = yx where i ≥ 0
(Figure 3 (a), or (b)) and u (Figure 3, (c)) as well as x, y are θ-palindromes,
where x ∈ Σ+, y ∈ Σ∗.

2. If θ is a morphic involution then u = x(yx)i and v = yx where yx = θ(x)θ(y)
and i ≥ 0 with y ∈ Σ∗ and x ∈ Σ+.

It was shown in [15] that when u = xy such that x, y ∈ Pθ and for an antimorphic
involution θ, u can be written as (αβ)n with x = (αβ)iα and y = β(αβ)n−i−1 .
The authors also proved that for u = xy = θ(y)θ(x) for a morphic involution θ,
either u = αm for α ∈ Pθ or u = [αθ(α)]n for some α ∈ Σ+. We use these results
and Proposition 3 to deduce the following corollary.

Corollary 3. Let u, v ∈ Σ+ such that u θ-commutes with v.

1. If θ is a morphic involution then one of the following hold:
(a) u = αm and v = αn for some m, n ≥ 1, α ∈ Pθ.
(b) u = θ(α)[αθ(α)]m and v = [αθ(α)]n for some n ≥ 1 and k ≥ 0 with

α ∈ Σ+.
2. If θ is an antimorphic involution, u = β(αβ)n and v = (αβ)m for some

α, β ∈ Pθ with m ≥ 1 and n ≥ 0.

Based on the definitions and the previous two results we have the following
observation.

Lemma 4. Let w ∈ Σ+ and θ be an antimorphic involution. Then w is a θ-
palindrome iff there exists v ∈ Σ∗ such that v �= w and v ≤θ

c w.

Note that Lemma 4 states that, for an antimorphic involution θ, a word w ∈
Cθ(1) iff w is not a θ-palindrome, i.e., the set L = Σ∗ \ Cθ(1) is the set of all
θ-palindromes.

Note that for a word w which is not a θ-palindrome for an antimorphic in-
volution θ, Lθ

c(w) may be an emptyset. For example, let Σ = {a, b}, and θ be
an antimorphic involution that maps a to b and vice versa. Let w = ababa, then
θ(w) = babab. Clearly w �= θ(w). Note that

– w = abab · a �= θ(a) · abab = babab.
– w = aba · ba �= θ(ba) · aba = baaba.
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– w = ab · aba �= θ(aba) · ab = babab.
– w = a · baba �= θ(baba) · a = babaa.

Thus it is clear that for w = ababa there does not exist a v ∈ Σ∗ such that
w = vx = θ(x)v and thus Lθ

c(w) = ∅.

Lemma 5. Let θ be either a morphic or an antimorphic involution. For all
u ∈ Σ+, θ(Lθ

c(u)) = Lθ
c(θ(u)).

Lemma 6. Let θ be either a morphic or an antimorphic involution. Then for
all u ∈ Cθ(1) we have u+ ⊆ Cθ(1).

It is shown in [14], that if u and v are θ-unbordered for an antimorphic involution
θ, then for u = u1u2 such that u1, u2 ∈ Σ+, u1vu2 is also θ-unbordered. But it
is not true for words in Cθ(1). We illustrate it in the following example.

Example 5. Let Σ = {a, b} and let θ be an antimorphic involution that maps a
to b and vice versa. Note that u = abb ∈ Cθ(1) since u �= θ(u) and ab · b �= a · ab
and a · bb �= aa · a. Let v = a and v ∈ Cθ(1) since v �= θ(v). But u1vu2 with
u1, u2 ∈ Σ+ is either a ·a · bb or ab ·a · b. Note that both aabb, abab /∈ Cθ(1) since
aabb = θ(aabb) and abab = θ(abab).

Proposition 4. Let u, v ∈ Cθ(1) and θ(Pref(u))∩ Suff(v) = ∅.
1. If θ is an antimorphic involution then uv ∈ Cθ(1).
2. If θ is a morphic involution then uv is not necessarily in Cθ(1).

Proof. 1. Let θ be an antimorphic involution. Suppose for some u, v ∈ Cθ(1),
uv /∈ Cθ(1) then there exists α ∈ Σ+ such that uv = pα = θ(α)p. Then
we have the following cases. If |α| ≤ |v| and |θ(α)| ≤ |u|, we have v = rα
and u = θ(α)s then α ∈ θ(Pref(u))∩Suff(v) a contradiction. If |α| ≤ |v|
and |θ(α)| ≤ |uv| we have v = rα and θ(α) = us then α = θ(s)θ(u) and
v = rθ(s)θ(u) for some r, s ∈ Σ∗ which implies θ(u) ∈ θ(Pref(u))∩ Suff(v)
which is a contradiction. If |α| ≤ |uv| and |θ(α)| ≤ |u| we have α = rv and
u = θ(α)s then u = θ(v)θ(r)s for some r, s ∈ Σ∗ which implies θ(v) ∈ Pref(u)
and hence v ∈ θ(Pref(u))∩ Suff(v) which is a contradiction. If |α| ≤ |uv| and
|θ(α)| ≤ |uv| we have α = rv and θ(α) = us then α = rv = θ(s)θ(u). Then
we have the following subcases:
– If |v| = |u| then θ(u) = v.
– If |u| < |v| then v = βθ(u) for some β ∈ Σ+ and θ(u) ∈ θ(Pref(u))∩

Suff(v).
– If |v| < |u| then θ(u) = βv for some c ∈ Σ+ and θ(u2)θ(u1) = βv with

u = u1u2 and |u1| = |v| which implies θ(u1) ∈ θ(Pref(u))∩ Suff(v).
All the above cases arrive at a contradiction. Hence uv ∈ Cθ(1).

2. Let u = ab and v = a over the alphabet set Σ = {a, b} and let θ be a morphic
involution that maps a to b and vice versa. Then θ(u) = ba and θ(v) = b.
Note that u, v ∈ Cθ(1). Also Pref(u) = {a, ab} , θ(Pref(u)) = {b, ba} and
Suff(v) = {a}. Note that θ(Pref(u))∩ Suff(v) = ∅. But uv = aba /∈ Cθ(1)
since a · ba = θ(ba) · a = aba which implies that a ∈ Lθ

c(uv).
�	
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Note that the converse of the statement 1 in Proposition 4 does not hold in
general. Let Σ = {a, b} and θ be an antimorphic involution that maps a to b
and vice versa. Let u = aba and v = abb. Then θ(u) = bab and θ(v) = aab. Note
that u �= θ(u) and v �= θ(v) and u, v ∈ Cθ(1). For uv = abaabb, θ(uv) = aabbab
and

– abaab · b �= θ(b) · abaab = aabaab.
– abaa · bb �= θ(bb) · abaa = aaabaa.
– aba · abb �= θ(abb) · aba = aababa.
– ab · aabb �= θ(aabb) · ab = aabbab.
– a · baabb �= θ(baabb) · a = aabbaa.

Hence uv ∈ Cθ(1). But Pref(u) = {a, ab, aba}, Suff(v) = {b, bb, abb} and
θ(Pref(u)) = {b, ab, bab}. Thus b ∈ θ(Pref(u))∩ Suff(v) �= ∅.

Lemma 7. Let θ be either a morphic involution or an antimorphic involution
and let Σ be such that for all a ∈ Σ, θ(a) �= a. Then Dθ(1) ⊆ Cθ(1).

In [14], it was shown that for an antimorphic involution θ, the set of all θ-
bordered words is regular. Note that from Lemma 4, Cθ(1) is the set of all non
θ-palindromes for an antimorphic involution θ. We show using pumping lemma
for regular languages that Σ∗\Cθ(1) is not regular and hence Cθ(1) is not regular
for an antimorphic involution θ.

Lemma 8. When θ is an antimorphic involution, the set of all θ-palindrome
words is not regular.

Proof. Let Σ = {a, b} and let θ be an antimorphic involution that maps a �→ b
and viceversa. Assume that the language L of all θ-palindromes is regular and
let n be the constant given by the pumping lemma. Chose w = anbn and note
that w = θ(w) and hence w is a θ-palindrome. Let w = anbn = xvy such that
|xv| ≤ n and |v| > 0. Then z = xviy contains more a’s than b’s for all i and
hence z is not a θ-palindrome. Thus L = Σ∗ \ Cθ(1) is not regular. �	
In our last proposition we construct a context-free grammar that generates the set
of all θ-palindromes over a finite alphabet set for an antimorphic involution θ.

Proposition 5. For an antimorphic involution θ, the set L = Σ∗ \ Cθ(1) is
context-free.

Proof. Let Σ be a finite alphabet set and let G = ({X, Y }, Σ, X, R) where
R = {X → λ, Y → λ, X → aiXθ(ai) for all ai ∈ Σ and X → biY , Y → biY for
all bi ∈ Σ such that bi = θ(bi) }. It is easy to check that G generates the set of
all θ-palindromes over Σ and G is context-free. Hence L(G) = Σ∗ \ Cθ(1). �	
It is shown in Proposition 5.4 in [14] that for a morphic involution θ, the set of
all θ-bordered words is not context-free. It is also clear from Proposition 5.4 in
[14] that L = Σ∗ \ Cθ(1) is not context-free when θ is a morphic involution.
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